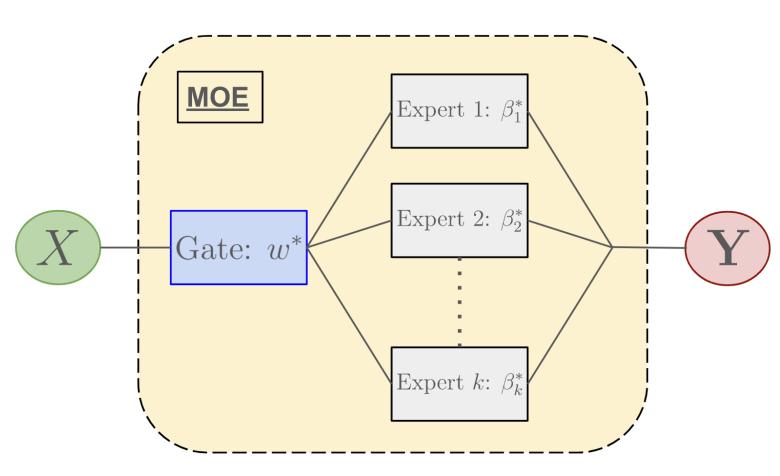


Mixtures of Experts (MoE)

- ➤ Why MoE? Increase model parameters for fixed training and inference costs.
- ➤ Many applications:
 - \Rightarrow LLM: Mixtral (2024), DeepSeek-V3 (2024)
 - ⇒ Transformers: Switch Transformers (2022)
- ➤ Assumed Generative Model:

$$p(\boldsymbol{x}, y) = p(\boldsymbol{x}) \sum_{z \in [k]} p(y|\boldsymbol{x}, z) P(z|\boldsymbol{x}).$$



- $\Rightarrow (\boldsymbol{x}, y) \in \mathbb{R}^{d \times 1}$: (feature, target) pair.
- $\Rightarrow z \in [k]$: Unobserved expert label for (x, y) pair where

$$P(z=i|\boldsymbol{x};\boldsymbol{w}^*) = rac{e^{\boldsymbol{x}^{ op}\boldsymbol{w}_i^*}}{\sum_{j\in[k]}e^{\boldsymbol{x}^{ op}\boldsymbol{w}_j^*}}, \qquad i\in[k].$$

- ▶ Goal: Want to find the ground truth parameters $m{ heta}^* = (m{w}^*, m{eta}^*)$.
 - \Rightarrow Find the minimizers of the likelihood, $\mathcal{L}(\boldsymbol{\theta})$:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{X}} \left[\log p(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{X},Y} \left[\log \left(\sum_{z \in [k]} p(y|\boldsymbol{x},z) P(z|\boldsymbol{x}) \right) \right]$$

Expectation Maximization (EM) Algorithm

- **►** Motivation:
- ⇒ We know EM is powerful for learning Mixtures of Gaussians and Mixtures of Regressions, but we lack understanding for MoE.
- ⇒ We know EM is equivalent to Mirror Descent for exponential family distributions, but this does not include MoE.
- ► EM Algorithm for MoE:
 - \Rightarrow Iterative global minimization of the EM objective, $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^t)$:

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^t) = -\mathbb{E}_{X,Y}\left[\mathbb{E}_{Z|\boldsymbol{x},y;\boldsymbol{\theta}^t}[\log p(\boldsymbol{x},y,z;\boldsymbol{\theta})]\right].$$

 \Rightarrow EM objective linearly separable in $(\boldsymbol{w}, \boldsymbol{\beta})$:

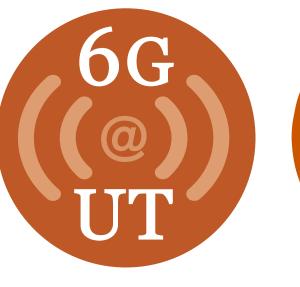
$$oldsymbol{w}^{t+1} = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^d} - \mathbb{E}_{oldsymbol{X}, Y} \left[\mathbb{E}_{Z | oldsymbol{x}, y; oldsymbol{ heta}^t} \left[\log p(z | oldsymbol{x}; oldsymbol{w})
ight]
ight]$$

$$m{eta}^{t+1} = \operatorname*{argmin}_{m{eta} \in \mathbb{R}^d} - \mathbb{E}_{m{X},Y} \left[\mathbb{E}_{Z|m{x},y;m{ heta}^t} \left[\log p(y|z,m{x};m{eta})
ight]
ight].$$

Learning Mixtures of Experts with EM

Quentin Fruytier * , Aryan Mokhtari * , and Sujay Sanghavi *

*Department of Electrical and Computer Engineering, The University of Texas at Austin



EM is Mirror Descent for MoE

- ► Mirror Descent (MD):
 - \Rightarrow Bregman Divergence:

$$D_h(\boldsymbol{\theta}^t, \boldsymbol{\theta}) := h(\boldsymbol{\theta}) - h(\boldsymbol{\theta}^t) - \langle \nabla h(\boldsymbol{\theta}^t), \boldsymbol{\theta} - \boldsymbol{\theta}^t \rangle.$$

⇒ Iterative global minimization of MD objective:

$$\mathcal{L}(\boldsymbol{\theta}^t) + \langle \nabla \mathcal{L}(\boldsymbol{\theta}^t), \boldsymbol{\theta} - \boldsymbol{\theta}^t \rangle + \frac{1}{n} D_h(\boldsymbol{\theta}^t, \boldsymbol{\theta}).$$

- ▶ Symmetric Mixture of 2-Experts: $\beta^* := \beta_1^* = -\beta_2^*$.
 - ⇒ Symmetric Linear Expert:

$$p(y|\boldsymbol{x}, z = i; \boldsymbol{\beta}_i^*) \propto \exp\left\{\frac{(y - \boldsymbol{x}^{\top} \boldsymbol{\beta}_i^*)^2}{2}\right\}$$

⇒ Symmetric Logistic Expert:

$$P(y = 1 | \boldsymbol{x}, z = i; \boldsymbol{\beta}_i^*) = \frac{\exp(\boldsymbol{x}^\top \boldsymbol{\beta}_i^*)}{1 + \exp(\boldsymbol{x}^\top \boldsymbol{\beta}_i^*)}$$

Theorem(Simplified). For (x,y) from a MoE where y,z|x is in an exponential family, the EM Algorithm is equivalent to projected Mirror Descent with unit stepsize and Kullback Leibler Divergence where there is some mirror map $A(\theta)$ such that $D_{KL}(\theta_x,\phi_x)=D_A(\phi_x,\theta_x)$. For symmetric mixture of linear (or logistic) experts, the projection is trivial.

Convergence Analysis From an MD perspective

▶ Local Average Convexity: Convex set Θ containing θ^1, θ^* such that for all $\phi, \theta \in \Theta$,

$$\mathcal{L}(\boldsymbol{\phi}) \geq \mathcal{L}(\boldsymbol{\theta}) + \mathbb{E}_X \left[\langle \nabla \mathcal{L}(\boldsymbol{\theta}_x), \boldsymbol{\phi}_x - \boldsymbol{\theta}_x \rangle \right].$$

▶ Local Average Strong Relative Convexity: Convex set Θ containing θ^1, θ^* such that for all $\phi, \theta \in \Theta$,

$$\mathcal{L}(\boldsymbol{\phi}) \geq \mathcal{L}(\boldsymbol{\theta}) + \mathbb{E}_X \left[\langle \nabla \mathcal{L}(\boldsymbol{\theta}_x), \boldsymbol{\phi}_x - \boldsymbol{\theta}_x \rangle + \alpha D_h(\boldsymbol{\phi}_x, \boldsymbol{\theta}_x) \right].$$

Corollary(Simplified). For (x, y) from a General MoE, the EM iterates $\{\theta^t\}_{t\in[T]}$ satisfy:

1) **Stationarity.** For no additional conditions,

$$\min_{t \in [T]} \mathbb{E}_X \left[D_{KL}(\boldsymbol{\theta}_{\boldsymbol{x}}^t, \boldsymbol{\theta}_{\boldsymbol{x}}^{t+1}) \right] \leq \frac{\mathcal{L}(\boldsymbol{\theta}^1) - \mathcal{L}(\boldsymbol{\theta}^*)}{T}; \tag{1}$$

2) **Sub-linear Rate to** θ^* . If θ^1 is initialized in Θ , a locally convex region of $\mathcal{L}(\theta)$ containing θ^* , then

$$\mathcal{L}(\boldsymbol{\theta}^T) - \mathcal{L}(\boldsymbol{\theta}^*) \le \frac{\mathbb{E}_X \left[D_{KL}(\boldsymbol{\theta}_{\boldsymbol{x}}^*, \boldsymbol{\theta}_{\boldsymbol{x}}^1) \right]}{T} \tag{2}$$

3) **Linear Rate to** θ^* . If θ^1 is initialized in $\Theta \subseteq \Omega$, a locally strongly convex region of $\mathcal{L}(\theta)$ relative to $A(\theta)$ that contains θ^* , then

$$\mathcal{L}(\boldsymbol{\theta}^T) - \mathcal{L}(\boldsymbol{\theta}^*) \le (1 - \alpha)^T \left(\mathcal{L}(\boldsymbol{\theta}^1) - \mathcal{L}(\boldsymbol{\theta}^*) \right). \tag{3}$$

Missing Information Matrix

► Missing Information Matrix $(M(\theta))$:

$$oldsymbol{M}(oldsymbol{ heta}) = oldsymbol{I}_{oldsymbol{x},z,y|oldsymbol{ heta}}^{-1} oldsymbol{I}_{z|oldsymbol{x},y,oldsymbol{ heta}}$$

- $\Rightarrow I_{x,z,y|\theta}, I_{z|x,y,\theta}$ are the fisher information matrices.
- \Rightarrow In our setting,

$$egin{aligned} oldsymbol{I}_{oldsymbol{x},z,y|oldsymbol{ heta}} &=
abla^2 A(oldsymbol{ heta}) \ oldsymbol{I}_{z|oldsymbol{x},y,oldsymbol{ heta}} := -\mathbb{E}_{oldsymbol{X},Y} \mathbb{E}_{Z|oldsymbol{x},y,oldsymbol{ heta}} \left[rac{\partial^2}{\partial oldsymbol{ heta}^2} \log P(z|oldsymbol{x},y;oldsymbol{ heta})
ight] \end{aligned}$$

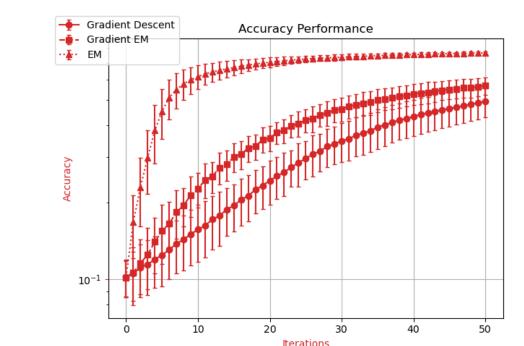
Theorem(Simplified). For (x, y) from a symmetric mixture of 2 logistic experts (or 2 linear experts), the objective $\mathcal{L}(\theta)$ is α -strongly convex relative to the mirror map $A(\theta)$ on the convex set Θ if and only if

$$\lambda_{\max}(\boldsymbol{M}(\boldsymbol{\theta})) \leq (1-\alpha)$$
 for all $\boldsymbol{\theta} \in \Theta$.

► Can now obtain sufficient conditions on the Signal to Noise Ratio for the assumptions in part 2) and 3) to be satisfied.

Numerical Experiments

- ► Altered FMNIST Experiment:
 - ⇒ Randomly flip images from a white object on a black background to a black object on a white background.
 - \Rightarrow Train a Mixture of 2 Logistic Experts.



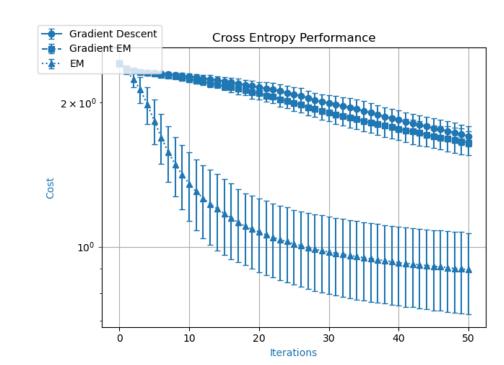
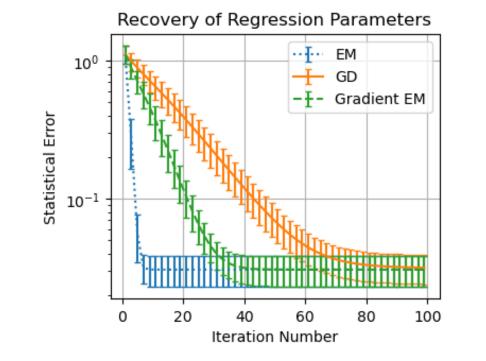


Figure 1: Mixture of 2 Logistic Experts for altered FMNIST dataset

ightharpoonup Synthetic Experiment on Symmetric Mixture of 2 Linear Experts.



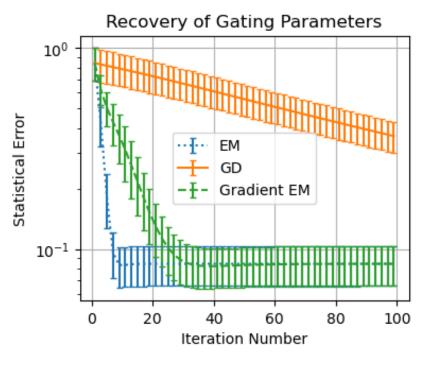


Figure 2: Symmetric Mixture of 2 Linear Experts