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Mixtures of Experts (MoE)

▶ Why MoE? Increase model parameters for fixed training and inference
costs.

▶ Many applications:
⇒ LLM: Mixtral (2024), DeepSeek-V3 (2024)
⇒ Transformers: Switch Transformers (2022)

▶ Assumed Generative Model:
p(x, y) = p(x)

∑
z∈[k]

p(y|x, z)P (z|x).

⇒ (x, y) ∈ Rd×1: (feature,target) pair.
⇒ z ∈ [k]: Unobserved expert label for (x, y) pair where

P (z = i|x; w∗) = ex⊤w∗
i∑

j∈[k] e
x⊤w∗

j

, i ∈ [k].

▶ Goal: Want to find the ground truth parameters θ∗ = (w∗, β∗).
⇒ Find the minimizers of the likelihood, L(θ):

L(θ) = EX [log p(x)] + EX,Y

log

∑
z∈[k]

p(y|x, z)P (z|x)



Expectation Maximization (EM) Algorithm

▶ Motivation:
⇒ We know EM is powerful for learning Mixtures of Gaussians and

Mixtures of Regressions, but we lack understanding for MoE.
⇒ We know EM is equivalent to Mirror Descent for exponential

family distributions, but this does not include MoE.
▶ EM Algorithm for MoE:

⇒ Iterative global minimization of the EM objective, Q(θ|θt):
Q(θ|θt) = −EX,Y

[
EZ|x,y;θt[log p(x, y, z; θ)]

]
.

⇒ EM objective linearly separable in (w, β):
wt+1 = argmin

w∈Rd

−EX,Y

[
EZ|x,y;θt [log p(z|x; w)]

]
βt+1 = argmin

β∈Rd

−EX,Y

[
EZ|x,y;θt [log p(y|z, x; β)]

]
.

EM is Mirror Descent for MoE

▶ Mirror Descent (MD):
⇒ Bregman Divergence:

Dh(θt, θ) := h(θ) − h(θt) − ⟨∇h(θt), θ − θt⟩.
⇒ Iterative global minimization of MD objective:

L(θt) + ⟨∇L(θt), θ − θt⟩ + 1
η

Dh(θt, θ).

▶ Symmetric Mixture of 2-Experts: β∗ := β∗
1 = −β∗

2 .
⇒ Symmetric Linear Expert:

p(y|x, z = i; β∗
i ) ∝ exp

{
(y − x⊤β∗

i )2

2

}
⇒ Symmetric Logistic Expert:

P (y = 1|x, z = i; β∗
i ) = exp(x⊤β∗

i )
1 + exp(x⊤β∗

i )

Theorem(Simplified). For (x, y) from a MoE where y, z|x is in an
exponential family, the EM Algorithm is equivalent to projected Mirror
Descent with unit stepsize and Kullback Leibler Divergence where there
is some mirror map A(θ) such that DKL(θx, ϕx) = DA(ϕx, θx). For
symmetric mixture of linear (or logistic) experts, the projection is trivial.

Convergence Analysis From an MD perspective

▶ Local Average Convexity: Convex set Θ containing θ1, θ∗ such that
for all ϕ, θ ∈ Θ,

L(ϕ) ≥ L(θ) + EX [⟨∇L(θx), ϕx − θx⟩] .
▶ Local Average Strong Relative Convexity: Convex set Θ

containing θ1, θ∗ such that for all ϕ, θ ∈ Θ,
L(ϕ) ≥ L(θ) + EX [⟨∇L(θx), ϕx − θx⟩ + αDh(ϕx, θx)] .

Corollary(Simplified). For (x, y) from a General MoE, the EM iter-
ates {θt}t∈[T ] satisfy:
1) Stationarity. For no additional conditions,

min
t∈[T ]

EX

[
DKL(θt

x, θt+1
x )

]
≤ L(θ1) − L(θ∗)

T
; (1)

2) Sub-linear Rate to θ∗. If θ1 is initialized in Θ, a locally convex
region of L(θ) containing θ∗, then

L(θT ) − L(θ∗) ≤ EX [DKL(θ∗
x, θ1

x)]
T

(2)

3) Linear Rate to θ∗. If θ1 is initialized in Θ ⊆ Ω, a locally strongly
convex region of L(θ) relative to A(θ) that contains θ∗, then

L(θT ) − L(θ∗) ≤ (1 − α)T
(
L(θ1) − L(θ∗)

)
. (3)

Missing Information Matrix

▶ Missing Information Matrix (M(θ)):
M (θ) = I−1

x,z,y|θIz|x,y,θ

⇒ Ix,z,y|θ, Iz|x,y,θ are the fisher information matrices.
⇒ In our setting,

Ix,z,y|θ = ∇2A(θ)

Iz|x,y,θ : = −EX,YEZ|x,y,θ

[
∂2

∂θ2 log P (z|x, y; θ)
]

Theorem(Simplified). For (x, y) from a symmetric mixture of 2
logistic experts (or 2 linear experts), the objective L(θ) is α-strongly
convex relative to the mirror map A(θ) on the convex set Θ if and only
if

λmax(M (θ)) ≤ (1 − α) for all θ ∈ Θ.

▶ Can now obtain sufficient conditions on the Signal to Noise Ratio for the
assumptions in part 2) and 3) to be satisfied.

Numerical Experiments

▶ Altered FMNIST Experiment:
⇒ Randomly flip images from a white object on a black background

to a black object on a white background.
⇒ Train a Mixture of 2 Logistic Experts.

Figure 1: Mixture of 2 Logistic Experts for altered FMNIST dataset

▶ Synthetic Experiment on Symmetric Mixture of 2 Linear Experts.

Figure 2: Symmetric Mixture of 2 Linear Experts


