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Mixtures of Experts (MoE)

» Why MoE? Increase model parameters for fixed training and inference

costs.

» Many applications:
= LLM: Mixtral (2024), DeepSeek-V3 (2024)

= Transformers: Switch Transformers (2022)

» Assumed Generative Model:
p(z,y) =plx) > plylz, 2)P(z|z).
z€|k]

Expert 1: 3]

Expert 2: 35

Expert k: 3}

= (x,y) € R¥™!: (feature target) pair.
= z € |k]: Unobserved expert label for (x,y) pair where
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» Goal: Want to find the ground truth parameters 8* = (w*, 8%).
= Find the minimizers of the likelihood, £(0):

L(0) = Ex [logp(x)] + Ex y |log (Z plyle, Z)P(ch))
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Expectation Maximization (EM) Algorithm

» Motivation:
= We know EM is powerful for learning Mixtures of Gaussians and
Mixtures of Regressions, but we lack understanding for MoE.

= We know EM is equivalent to Mirror Descent for exponential
family distributions, but this does not include MoE.

» EM Algorithm for MoE:
= lterative global minimization of the EM objective, Q(0]0"):

Q(e‘et) — _EX,Y []EZ|m,y;0t[1ng<wa Y, <, 0)]} .
= EM objective linearly separable in (w, 8):

w't! = argmin —Ex y [EZ\w,y;Ht log p(2|; w)]}
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EM is Mirror Descent for MoE

» Mirror Descent (MD):

= Bregman Divergence:
Dy,(0%,0) := h(0) — h(0") — (Vh(0"),0 — 8").

= lterative global minimization of MD objective:

C(6") + (VL(O)).0 — 0') + %Dh(et, 0).

» Symmetric Mixture of 2-Experts: 5" .= 5] = —[.
= Symmetric Linear Expert:

o Y
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= Symmetric Logistic Expert:
__exp(z' b))
1 4+ exp(ax'B})

Ply =1z, 2z =1;8])

Theorem(Simplified). For (x,y) from a MoE where y, z|x is in an
exponential family, the EM Algorithm is equivalent to projected Mirror
Descent with unit stepsize and Kullback Leibler Divergence where there

is some mirror map A(0) such that Dy (0., ®.) = Da(¢,,0,). For
symmetric mixture of linear (or logistic) experts, the projection is trivial.

Convergence Analysis From an MD perspective

» Local Average Convexity: Convex set © containing ', 8* such that
for all @, 0 € O,

L(¢p) = L(0) +Ex (VL(0,), p. — 0.)].
» Local Average Strong Relative Convexity: Convex set ©
containing 0!, 0* such that for all .0 € O,

L(¢) > L(O)+Ex (VLO,), P, — 0,) +aDy(d,,0,).

Corollary(Simplified). For (x,y) from a General MoE, the EM iter-
ates {0'},cir) satisfy:

1) Stationarity. For no additional conditions,

L(6") — L(6")

S ()

nEy | Dy (0,001 <
min X{ k(0,0 )] <
2) Sub-linear Rate to 0*. If 0! is initialized in ©, a locally convex
region of L(0) containing 8*, then
Ex [Drr(0},0,)]
2 2)

L0 — L(6") <

3) Linear Rate to 0*. If 0' is initialized in © C (), a locally strongly
convex region of L(0) relative to A(@) that contains 8%, then

L(07) — L") < (1—a)" (L(6") - L(6)). (3)

Missing Information Matrix

» Missing Information Matrix (M(0)):
~1
M<0) — Iw,z,y|9IZ|m7%9
= Iy .46, 12|26 are the fisher information matrices.

= In our setting,

I..,0= VA0
_ 82
Iz|ar:,y,9 L= _EX,YEZ|w,y,9 @bgp(z‘wa Y, 0)

Theorem(Simplified). For (x,y) from a symmetric mixture of 2
logistic experts (or 2 linear experts), the objective L(0) is c-strongly
convex relative to the mirror map A(@) on the convex set O if and only

if
Amax(M(0)) < (1 — «) for all @ € O.

» Can now obtain sufficient conditions on the Signal to Noise Ratio for the
assumptions in part 2) and 3) to be satisfied.

Numerical Experiments

» Altered FMNIST Experiment:
= Randomly flip images from a white object on a black background
to a black object on a white background.

= Train a Mixture of 2 Logistic Experts.

Accuracy Performance
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Figure 1: Mixture of 2 Logistic Experts for altered FMNIST dataset

» Synthetic Experiment on Symmetric Mixture of 2 Linear Experts.

Recovery of Regression Parameters Recovery of Gating Parameters

I EM

—— 6D
-{- Gradient EM

1 .I EM
AN, —f op

My -+- Gradient EM

Statistical Error
Statistical Error

T T T T T T T T T T
40 60 80 100 20 40 60 80 100
lteration Number lteration Number

Figure 2: Symmetric Mixture of 2 Linear Experts




