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What is a Mixture of Experts (MoE)

Quick Recap:

 MoE splits the input space via a “Gate” function and
assigns parts to specialized models (experts).

* Popular “Gate” function is the softmax given by

| -
E:I-' 'HJT-

Plz =ilz;w™) = —, i € [k].
D ek € 7

Training:
* Gradient Descent like methods on log-likelihood.

Our focus:
» Can the classical Expectation-Maximization (EM)
Algorithm do better?
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What is Expectation-Maximization (EM)

Algorithm 1 EM for Mixture of Experts

1: Input: Initial 8! € , data: (X.Y) ~ p(x.y; 0%)
- fort=1to T do
f-Update: Obtain 8'*! as
Ot « arg mingeq Q(8 | 6°)
5: end for
6: Output: 87 = (w?!,3")

EM takes a structured approach to minimizing the
negative log-likelihood objective.

= b

« E-Step:
o Compute expectation of complete data (x,y,z) log-

likelihood with respect to the latent variable z conditioned
on observable data and current model parameters.
 M-Step:
o Solve the Maximization (or minimization) problem for w
this expectation (or the negative expectation)

Q(016") = —Ex vy [Ezjq 0t [log p(z, y, 2:0)]]

1 — arg min —Exy EZe.y0t logp(z|lz; w)]]
weR

Jﬂt+1 — arg min _EX._F [IE:EL:::,;r:.v;n‘f-it []Dgp{mzm:ﬁ}]] :
[BeRd
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Theoretical Contributions

Theorem 4.1 [informal]: For a general class of MoOE models, the iterations of EM are directly equivalent to
projected Mirror Descent with unit step size and Kullback Leibler divergence regularizer.

Theorem 4.2 [informal]: For a general class of MoE models, the iterations of EM are
I. Always at least guaranteed to convergence to a stationary point sub-linearly

Ii. Converge sub-linearly (or linearly) to the true parameters under suitable initialization in a region that
satisfies specific convexity properties.

Theorem 5.1 [informal]: For special 2-component mixture of Linear (or Logistic) Experts, the iterations of EM

are directly equivalent to Mirror Descent (no projection) with unit step size and Kullback Leibler divergence
regularizer.

Following Results for this specific case [informal]:

a.Corollary B.1: Recover sufficient conditions for convergence

b.Theorem B.2: Link conditions to top eigen values of Missing Information Matrix (MIM)
c.Theorem B.4: Link conditions to Signal to Noise Ratio (SNR) of the true model
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Empirical Validation

Symmetric Mixture of Linear Experts (Synthetic)
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Figure 1: Convergence of objective errors £(8%) — £(8*) and £(8%) — £(87) in Fig la and Fig 1b,
respectively, averaged over 50 instances when fitting a SymMoLinE.

Recovery of Regression Parameters

Recovery of Gating Parameters

0
10° .I EM 10" 1 Hh .
~ 6D - ]rHj-}Hﬁ
~}- Gradient EM j { H.[.H_m
1 =
: : I Wi
= ul A ~f- EM
S o '- —— @D
B : ko IMY ~-F- Gradient EM
® 10711 N G 1H
o \ in b
N7 N T
1), Iy 10-1 1 [ I
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Number Iteration Number
(a) (b)
: _— 1B —B"ll2
Figure 2: This figure shows the progress made towards the true parameters, AT
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in figures 2a and 2b respectively, averaged over 50 instances when fitting a SymMoLinE

Mixture of 2 Logistic Experts (FMNIST):

Table 2: Performance for 2-Component MoLogE

Accuracy

Cross Entropy

EM

18.5%

0.827

Gradient EM

66.0%

1.29

(Gradient Descent

62.4%

1.30

—$— Gradient Descent Accuracy Performance

—§— Gradient Descent

Cross Entropy Performance
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Figure 3: Test accuracy and objective function, % " 1y, and £(8") in 3a and 3b, respectively,
averaged over 25 instances for a 2-component MoLogE train on Random Invert FMNIST.
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Conclusion

Takeaway: EM isn't outdated—it's an MD algorithm in disguise with strong convergence properties.
This paper aims to:

» Offer a principled, optimization-theoretic interpretation of EM

» Unify prior scattered convergence results.

» Reveal when and why EM converges and at what rate.

» Validate theoretical guarantees empirically.

Impact: Better understanding of EM and tuning of latent variable models like MoE.

Future Work:
o Scalable EM via mini-batch paradigm.
o Extensions to Deep and Sparse MoE.
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